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Abstract— This study presents GlauCUTU-WebXR, an ad-
vanced glaucoma screening system leveraging commercial vir-
tual reality (VR) devices with WebXR for broader accessibility.
Transitioning from custom 3D-printed hardware, GlauCUTU-
WebXR integrates an improved prediction model that enhances
sensitivity predictions using positional features (position index:
PID) and severity classification metadata (SeverityScore). These
additions help the model capture positional and severity-specific
patterns, which, in turn, significantly improve prediction accu-
racy in converting GlauCUTU sensitivity to Humphrey Field
Analyzer (HFA) sensitivity. The model trained and validated
on 97 eyes (47 patients) and tested on 24 eyes (12 patients)
with varying glaucoma severity, it achieved a mean absolute
error (MAE) of 4.3398, root mean square error (RMSE)
of 6.6614, and a Pearson correlation of 0.8033. The system
significantly reduced testing time compared to HFA (p<0.001).
GlauCUTU-WebXR shows no significant differences in results
compared to HFA across severity levels: none (p=0.8750), mild
(p=0.5888), moderate (p=0.9153), and severe (p=0.9958). By
utilizing commercial VR hardware and enhanced prediction
models, GlauCUTU-WebXR provides a cost-effective, efficient
alternative for glaucoma screening, particularly in resource-
limited settings, demonstrating its potential to improve acces-
sibility and early detection efforts.

Keyword—glaucoma, visual field testing, virtual reality, We-
bXR, machine learning

I. INTRODUCTION

Glaucoma, a chronic and progressive ocular disorder
characterized by optic neuropathy and visual field loss,
is the leading cause of irreversible blindness worldwide.
In 2020, approximately 64.3 million people were affected,
a figure projected to rise to 111.8 million by 2040 [1].
Despite its incurable nature, early detection and regular
ophthalmologic care are essential to preserving vision, as
glaucoma typically remains asymptomatic until advanced
stages [2]. In Thailand, glaucoma is the second leading cause
of blindness after cataracts, with a prevalence of 2.5% to
3.8%. Alarmingly, the incidence of glaucoma in Thailand
is expected to rise threefold for males and fourfold for
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Fig. 1. GlauCUTU-WebXR an enhanced visual reality visual field pemitary
system for HFA sensitivity prediction.

females over the next 50 years [3]. While Thailand meets
the World Health Organization’s recommended ratio of one
ophthalmologist per 100,000 people nationally, rural areas
face significant disparities, with only 26% of provinces and
14% of districts meeting this standard [4]. This urban-
rural gap, coupled with limited access to essential screening
equipment, exacerbates preventable cases of blindness in
underserved populations. Furthermore, the economic burden
of glaucoma is substantial, with treatment costs in the US
exceeding $1 billion annually, particularly for patients with
advanced disease stages [3]. Addressing these disparities and
ensuring equitable access to care is critical to mitigating the
growing impact of glaucoma globally and within Thailand.

Visual field (VF) testing plays a vital role in diagnosing
and monitoring glaucoma progression, with the Humphrey
Field Analyzer (HFA) being the most widely used device
[5], [6]. Despite its widespread use, the HFA’s limitations,



which include immobility, high cost, and the need for patients
to maintain a fixed head position restrict its accessibility in
low-resource settings [6], [7]. To overcome these limitations,
virtual reality (VR) based perimetry systems have emerged
as a promising alternative, providing portability, improved
patient comfort, and potential for home-based testing [6],
[8]. The development of reliable VR perimetry devices holds
significant promise for improving glaucoma screening and
management in underprivileged areas [7].

Virtual reality (VR) technologies are increasingly explored
for their capabilities in visual field assessment. Early work
by Tsapakis et al. demonstrated an implementation of VR by
using Trust EXOS 3D VR glasses with a smartphone, achiev-
ing a high correlation coefficient (r=0.8080, p<0.0001) with
HFA [9]. However, the small sample size of 10 patients
highlights the need for further validation to confirm its
efficacy. Building upon this foundation, Razeghinejad et
al. evaluated the VisuALL head-mounted perimeter, which
demonstrated a strong correlation with HFA for mild and
moderate glaucoma. Nonetheless, its reduced accuracy in
severe cases and the longer testing durations compared to
traditional HFA testing illustrated the challenges in optimiz-
ing VR-based approaches for glaucoma screening [10].

Recent advances focus on improving HFA sensitivity
prediction accuracy and testing efficiency. For example, the
NOVA trial by Bradley et al. compared estimated sensitivities
between their RATA-Standard algorithm and SITA-Standard,
finding no significant differences for right eye measurements,
but noting discrepancies in left eye results and reduced ac-
curacy near its 15 dB measurement floor [11]. Additionally,
our previous work, GlauCUTU introduced a novel Time-
Until-Perceived (TUP) approach and achieved a significant
reduction in test time compared to HFA (290 seconds vs.
600 seconds) while show no significant differences with
HFA Visual Field Index (VFI) predictions (p=0.996 for HFA
vs. GlauCUTU-ML) with high-reliability agreement with
clinicians’ interpretations of HFA results [8].

Despite these advances, existing VR perimetry systems
still face challenges in balancing test duration with prediction
accuracy. GlauCUTU demonstrated the potential for rapid
testing using TUP measurements. Nevertheless, it showed
limitations in sensitivity prediction accuracy, particularly for
moderate and severe glaucoma cases [8]. Additionally, like
other systems, GlauCUTU relied on custom hardware solu-
tions, in turn, limiting scalability and accessibility in low-
resource settings [8], [11]. These challenges motivated the
development of an enhanced system, GlauCUTU-WebXR.
This enhanced system sought to transform GlauCUTU into
a more accessible and affordable VR perimetry system while
maintaining accurate HFA sensitivity estimation. It maintains
GlauCUTU’s efficient test duration while also enhancing
both its HFA sensitivity prediction accuracy and scalability.
The key contributions of our work are as follows:

1) Transitioning to a commercial-grade VR headset for
GlauCUTU-WebXR that improves affordability and
scalability and facilitates broader adoption for glau-
coma screening in low-resource settings.

2) Creating an enhanced algorithm in GlauCUTU-
WebXR that predicts HFA sensitivity with higher ac-
curacy than the original GlauCUTU version [8], as
demonstrated by the improved performance metrics.

3) The statistical results show no significant differences
in VFI prediction between GlauCUTU-WebXR and
HFA across all glaucoma severity levels, indicating that
GlauCUTU-WebXR is a viable alternative to HFA for
accessible glaucoma screening.

The remainder of this paper is organized as follows:
Section II details the data sets used in this study. Section III
describes the experimental design and setup, while Section
IV presents the results. Section V provides the discussion,
conclusion, and future directions.

II. DATA SET

A. Study group

The study recruited outpatients from King Chulalongkorn
Memorial Hospital’s ophthalmology clinic. Participants were
selected based on their medical records, provided with
comprehensive information about the study, and asked to
sign an informed consent statement. The study protocol was
approved by the Chulalongkorn Institutional Review Board
(No. 715/61). A total of 70 patients were enrolled, ranging in
age from 38 to 89 years (average age with standard deviation
of 64.43±9.65 years). In total, 140 eyes were examined and
categorized by glaucoma severity: 46 eyes as normal, 40 as
mild, 21 as moderate, and 33 as severe.

The participants were divided into two groups: a control
group and a glaucoma study group. Inclusion criteria for both
groups were as follows: age ≥18 years, fixation loss, false-
positive, and false-negative rates below 30% on Standard
Automated Perimetry (SAP), visual acuity (VA) of 20/70 or
better, and no use of alcohol or nervous system medications
within the past 14 days [8].

Participants in the glaucoma group required a confirmed
diagnosis of primary glaucoma based on Hodapp-Parrish-
Anderson (HPA) criteria and SAP-detected visual field de-
fects within the past 3 months [12]. Control group partici-
pants needed normal intraocular pressure and no glaucoma-
tous optic neuropathy per SAP results and HPA criteria. Ex-
clusion criteria for both groups included non-glaucomatous
visual field conditions and medications affecting the nervous
system.

B. Data preparation

The data cleaning was performed to exclude the data that
did not pass the requirements or was defective. A total of
11 subjects were dropped due to various issues including
standard testing protocols, medication effects, fixation issues,
excessive focus on central stimuli, inability to maintain
central fixation, and high false positive rates. These data
cleaning and subject drops were discussed and unanimously
approved by all the expert ophthalmologists in our team.

After data cleansing, the dataset was stratified by glau-
coma severity and split 80:20 for training and testing. Five-
fold cross-validation was applied to the training set, ensuring



TABLE I
COMPARISON OF MAE, RMSE, AND PEARSON’S R ACROSS DIFFERENT MODELS ON TEST SET.

Models

Metrics LWL AddReg Voter LWL+PID AddReg+PID Voter+PID
LWL+PID

+SeverityScore
AddReg+PID

+SeverityScore
Voter+PID

+SeverityScore
MAE 5.0446 5.0921 5.0731 4.8078 4.8080 4.8022 4.3377 4.3930 4.3398

RMSE 7.2118 7.2279 7.2173 6.8419 6.7696 6.7636 6.7123 6.6762 6.6614
Pearson’s r 0.7552 0.7545 0.7555 0.7835 0.7920 0.7906 0.8007 0.8035 0.8033

no data leakage by keeping eyes from the same patient within
the same fold. The final dataset included 59 patients (118
eyes): 94 eyes (47 patients) for training and validation (27
normal, 27 mild, 17 moderate, and 23 severe) and 24 eyes
(12 patients) for testing (7 normal, 7 mild, 4 moderate, and
6 severe). Additionally, the GlauCUTU dataset used in our
previous study [8], with 31 patients (62 eyes: 46 normal, 7
mild, 3 moderate, and 6 severe), was used to enhance training
and improve model performance.

III. EXPERIMENTAL DESIGN & SETUP

A. Transition to commercial-grade VR

In our previous work [8], the GlauCUTU perimetry system
was developed, and the TUR (Time Until Response) of the
patient was collected using the in-house 3D-printed VR head-
set. Then, Time Until Perceive (TUP) was derived from TUR
and the Best Possible Response Time (BPRT) using Equation
(1) of [8]. Additionally, the GlauCUTU sensitivity was
calculated using Equation (2) of [8]. Machine learning and
deep learning models were then applied to map GlauCUTU
sensitivity to HFA sensitivity, with the best regression model,
Locally Weighted Learning (LWL), achieving an MAE of
3.50±1.66, RMSE of 4.92±2.18, and Pearson correlation
coefficient (Pearson’s r) of 0.69±0.18 based on leave one out
cross validation. Furthermore, the GlauCUTU-ML showed
no significant difference in VFI compared to HFA across all
glaucoma severity levels: Normal (p=0.999), Mild (p=0.999),
Moderate (p=0.997), and Severe (p=0.573).

In addition of what stated earlier, although the custom
3D-printed VR headset validated the system’s feasibility,
it faced significant limitations in scalability and production
costs, rendering it impractical for widespread use in rural
and low-resource settings. To overcome these limitations,
we transitioned to a commercial VR headset. Commercial
devices offer consistent quality, reduced production costs,
and improved durability. The system was modernized using
WebXR [13], a web standard that enables cross-platform
VR/AR applications through web browsers. This implemen-
tation allows GlauCUTU-WebXR to run on web browsers
with compatible VR devices. Moreover, the web-driven
architecture enables an easy software update pipeline and
improves accessibility for data collection and clinical use.

B. Regression model with severity score

The GlauCUTU-WebXR software, coupled with a com-
mercial VR headset, was utilized to collect data from the
study group, adhering to the methodology established in
our previous work [8]. In this work, we extended the HFA
sensitivity prediction model by adding two new features:

positional features (position index: PID) and metadata from
a classification model (SeverityScore). These additions were
motivated by research showing that glaucomatous visual field
defects demonstrate patterns of damage and progression [14],
[15].

First, each of the test points was labeled according to the
methodology illustrated in Fig. 8 of [8]. Positional features
were introduced to pinpoint specific locations on the 24-2 test
grid where sensitivity predictions were focused. This spatial
information was crucial, as glaucomatous visual field defects
exhibit distinct regional patterns [14]. By incorporating these
features, the model could account for location-specific sen-
sitivity losses more effectively.

Second, classification metadata were added from a con-
fidence score generated by a classification model. This
model was trained to differentiate between normal/mild and
moderate/severe glaucoma using GlauCUTU sensitivity. This
classification boundary was selected based on visual field
progression patterns. As studies show, damage typically
evolves from limited defects in mild cases to more extensive
involvement in moderate and severe stages [14], [15]. Using
this classification, the confidence score provides additional
high-level information to the regression model for predicting
HFA sensitivity. Together with neighboring point features,
11 features were used to predict HFA sensitivity at specific
points on the visual field test grid. Figure. 1 shows the
proposed HFA sensitivity prediction model.

IV. EXPERIMENTAL RESULTS

Mean absolute error (MAE), Root mean square error
(RMSE), and Pearson’s r were used to evaluate the model’s
performance. The best model was selected after performing
5-fold cross validation on the validation set, and the final
performance was evaluated and compared on the test set as
detailed in Table I.

The models from previous work showed the following re-
sults: the LWL model achieved the best overall performance
with an MAE of 5.0446, an RMSE of 7.2118, and a Pearson’s
r of 0.7552. The Additive Regression (AddReg) model had
the highest MAE of 5.0921 and RMSE of 7.2279, with a
Pearson’s r of 0.7545. The Voter model demonstrated better
performance, with an MAE of 5.0731, an RMSE of 7.2173,
and a Pearson’s r of 0.7555, slightly surpassing LWL.
Among the baseline models, the LWL model demonstrated
the best performance.

Introducing the PID feature improved performance across
all models. The LWL+PID model achieved an MAE of
4.8078, RMSE of 6.8419, and Pearson’s r of 0.7835. The
AddReg+PID model had an MAE of 4.8080, RMSE of
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Fig. 2. HFA sensitivity comparison across different severities and models. Each row (from top to bottom) represents a severity category (Normal, Mild,
Moderate, and Severe), while each column (from left to right) corresponds to a model (LWL, Voter+PID, Voter+PID+SeverityScore, and Ground Truth).
The heatmaps display VF sensitivities at each test point, with darker shades indicating lower HFA sensitivities. The MAE and RMSE values in the top-left
corner of each prediction show the average error compared to the ground truth. Blue lines highlight the horizontal and vertical midlines of the visual field.

6.7696, and Pearson’s r of 0.7920. The Voter+PID model
achieved the lowest MAE and RMSE, at 4.8022 and 6.7636,
respectively, along with a Pearson’s r of 0.7906. Given its
enhanced performance, the Voter+PID model emerged as the
best overall performer in this category.

Introducing both PID and SeverityScore features further
enhanced the performance of the models. The LWL+PID
+SeverityScore model achieved the lowest MAE of 4.3377,
RMSE of 6.7123, and Pearson’s r of 0.8007. The Ad-
dReg+PID+SeverityScore model improved with an MAE
of 4.3930, RMSE of 6.6762, and Pearson’s r of 0.8035.
The Voter+PID+SeverityScore model achieving an MAE of
4.3398, RMSE of 6.6614, and Pearson’s r of 0.8033, overall,
making it the best performer for the category with both PID
and SeverityScore features.

When evaluating eyes with varying glaucoma severity,
the improved model exhibited better alignment with ground
truth visual field patterns as depicted by Fig. 2. For the
normal eye category (first row), all models nicely predicted
the blind spot, but only Voter+PID+SeverityScore correctly
predicted the VF region above the blind spot (area (a)). For
the mild eye category (second row), none of the models
effectively predicted the VF at the blind spot. However,
Voter+PID+SeverityScore estimated the lowest sensitivity at
9.85 dB while achieving the most accurate pattern with an
MAE of 1.9482 and RMSE of 2.6381. In the moderate sever-
ity category (third row), while the LWL + PID model cap-
tured the blind spot precisely, the Voter+PID+SeverityScore
generated a VF pattern closer to the ground truth, with
an MAE of 4.7807 and RMSE of 6.2836. For the severe



Fig. 3. Comparison of box plots of VFI calculated from predicted HFA
sensitivity of models: LWL, Voter+PID, and Voter+PID+SeverityScore,
across different levels of glaucoma severity (None, Mild, Moderate, and
Severe). The predictions are compared to the ground truth from the HFA
report.

category (fourth row), all models produced similar VF
predictions. However, the Voter+PID+SeverityScore model
delivered the closest overall sensitivity to the ground truth
with an MAE of 4.0540 and displayed the darkest shading of
VF, demonstrating superior overall performance compared to
other models.

The predicted HFA sensitivity from each model was used
to calculate the VFI and the box plots of the results are
shown in Fig. 3, along with the ground truth. A two way
ANOVA analysis was conducted to evaluate the effects of
disease severity and model type on prediction performance.
The analysis revealed no significant difference for severity
[F (3, 60)=2.3854, p=0.0780], no significant difference for
model type [F (2, 60)=2.0976, p=0.1317], and no significant
interaction between severity and model [F (6, 60)=0.9671,
p=0.4553]. While the ANOVA results indicated no significant
differences between groups, they only provided information
about overall differences between means.

To evaluate the clinical validity of our models, we con-
ducted paired t-tests to compare the predicted VFI against
the ground truth across different severity levels. The results
for the Voter+PID+SeverityScore model are summarized in
Table II. The analysis revealed no significant differences
across all severity levels for this model.

For the overall comparison, the Voter+PID+SeverityScore
model achieved a mean of differences (d̄) of −0.2663
with a standard deviation of differences (SD) of 5.9022,
which was not statistically significant difference com-
pared to the ground truth [t(23)=−0.2210, p=0.8270].
In contrast, both the LWL model and Voter+PID
model showed significant differences from the ground
truth (d̄±SD=4.5907±8.1858, [t(23)=2.7474, p=0.0115] and
d̄±SD=3.9649±8.6802, [t(23)=2.2377, p=0.0352], respec-
tively).

When examining specific severity levels, the
Voter+PID+SeverityScore model demonstrated minimal
deviation for normal eyes, with an d̄±SD of 0.2481±3.9993
[t(6)=0.1641, p=0.8750]. In contrast, the LWL model
and Voter+PID model showed significant deviations from
the ground truth (d̄±SD=5.8422±5.1332, [t(6)=3.0075,
p=0.0238], and d̄±SD=4.8339±5.9711, [t(6)=2.1418,
p=0.0760], respectively).

For mild cases, the Voter+PID+SeverityScore model

TABLE II
PAIRED t-TEST ANALYSIS COMPARING PREDICTED AND GROUND TRUTH

VFI SCORES OF VOTER+PID +SEVERITYSCORE MODEL ACROSS

DIFFERENT SEVERITY LEVELS. RESULTS SHOW MEAN OF DIFFERENCES

(d̄), STANDARD DEVIATION OF DIFFERENCES (SD ), t-STATISTICS, AND

p-VALUES.

Model Severity d̄ SD t-statistic p-value

Voter+PID
+SeverityScore

Overall −0.2663 5.9022 t(23)=−0.2210 0.8270
None 0.2481 3.9993 t(6)=0.1641 0.8750
Mild −1.4929 6.9195 t(6)=−0.5708 0.5888

Moderate 0.5949 10.2914 t(3)=0.1156 0.9153
Severe −0.0092 4.1108 t(5)=−0.0055 0.9958

had an d̄±SD of −1.4929±6.9195 [t(6)=−0.5708,
p=0.5888], which was not statistically significant differnece.
However, both the LWL model and Voter+PID model
exhibited significant deviations (d̄±SD=9.4385±7.0668,
[t(6)=3.5331, p=0.0123], and d̄±SD=8.9408±8.0940,
[t(6)=2.9193, p=0.0267], respectively).

For moderate and severe cases, none of the mod-
els showed significant differences from the ground
truth. In moderate cases, the LWL model achieved an
d̄±SD of 0.9227±15.1108 [t(3)=0.1221, p=0.9105], the
Voter+PID model achieved an d̄±SD of 0.4151±15.6960
[t(3)=0.0529, p=0.9611], and the Voter+PID+SeverityScore
model achieved an d̄±SD of 0.5949±10.2914 [t(3)=0.1156,
p=0.9153]. In severe cases, the LWL model had an d̄±SD of
−0.0796±2.7486 [t(3)=−0.0710, p=0.9462], the Voter+PID
model had an d̄±SD of −0.4875±2.7586 [t(3)=−0.4328,
p=0.6832], and the Voter+PID+SeverityScore model had an
d̄±SD of −0.0092±4.1108 [t(5)=−0.0055, p=0.9958].

The total testing time analysis revealed significantly
shorter duration when comparing GlauCUTU-WebXR
and HFA, with mean±standard deviation testing times
for GlauCUTU-WebXR and HFA being 255±28.7555
seconds and 721.0339±114.2914 seconds, respectively
[t(58)=36.5714, p<0.001]. The GlauCUTU-WebXR showed
more consistent performance with testing times ranging from
202 to 308 seconds compared to HFA’s range of 377 to 1066
seconds.

V. DISCUSSION AND CONCLUSION

This study focuses on enhancing the GlauCUTU perimetry
system by improving and evaluating the HFA sensitivity
prediction model using data collected from commercial VR
devices. Building on previous work, the inclusion of PID
and SeverityScore significantly improved the system’s per-
formance. These enhancements are illustrated in Fig. 2 and
Fig. 4, which compare the performance of LWL, Voter+PID,
and Voter+PID+SeverityScore models.

The incorporation of PID features addressed spatial ac-
curacy limitations, particularly in critical areas like the
blind spot. By accounting for location-specific sensitivity
patterns, the model achieved more consistent performance
across the visual field. For example, Figure. 4 shows that
the PID feature smoothed sharp error spikes, reducing MAE
at key positions, such as position 23 (the blind spot) in
the LWL model. Adding SeverityScores further enhanced



Fig. 4. Comparison of the average predicted HFA sensitivity across
all 54 visual field test points in the test set for LWL, Voter+PID, and
Voter+PID+SeverityScore. MAE (top) and RMSE (bottom) were calculated
based on the error between the predicted and its corresponding ground
truth at each VF position. Lines and markers represent the models:
LWL (orange line with circle), Voter+PID (green line with square), and
Voter+PID+SeverityScore (magenta line with cross).

performance, improving accuracy across the visual field.
Although blind spot errors increased slightly, overall MAE
and RMSE improved, demonstrating the value of integrating
glaucoma severity into the regression model to capture high-
level patterns.

Statistical analysis demonstrated the advantages of incor-
porating PID and SeverityScore features in over all cases,
with only the Voter+PID+SeverityScore model showing no
significant difference from the ground truth (p=0.8270). This
finding was most pronounced in normal and mild cases,
where the Voter+PID+SeverityScore model exhibited no
significant deviation (p=0.8750 and p=0.5888, respectively)
and achieved smaller d̄ values compared to the LWL and
Voter+PID models.

For mild cases, the Voter+PID+SeverityScore model
achieved a d̄±SD of only −1.4929±6.9195 compared to
larger SD in the LWL (9.4385±7.0668) and Voter+PID
(8.9408±8.0940) models, underscoring the value of incor-
porating spatial and severity information into predictions.
In moderate and severe cases, all models performed sim-
ilarly, showing no significant differences from the ground
truth. This finding suggests that while our enhanced model
improves accuracy in early-stage detection, there may be
additional factors to consider for advanced disease states.
The comparable performance across models in these cases
might be attributed to the more pronounced and consistent
patterns of visual field loss in advanced glaucoma.

The analysis of testing duration showed significant differ-
ences between the two methods. GlauCUTU-WebXR sub-
stantially reduced examination times (255±28.7556 seconds)
when compared to traditional HFA (721.0339±114.2914
seconds, p<0.001). Because GlauCUTU-WebXR can test
both eyes at the same time, patients experienced less fatigue
and greater comfort during the examination due to the shorter
testing period.

Despite advancements, the models showed limitations in
predicting moderate and severe glaucoma cases, with higher
SD (SD=10.2914 for moderate cases), indicating a need for
more data targeting these severity levels. Hardware variabil-
ity among commercial VR devices, such as differences in
resolution and brightness, also requires attention [9], [11].

Further point-by-point VF analysis is needed to validate
the model and assess the impact of additional features.
Future efforts will address these challenges by expanding
datasets, evaluating hardware variations, developing calibra-
tion protocols, and conducting clinical validations to improve
reliability of the system.

The GlauCUTU-WebXR system builds upon our previ-
ous VR-based glaucoma screening work [8]. By leveraging
commercial VR headsets and enhanced prediction models,
it offers a portable, affordable, and scalable alternative to
traditional tools. Features like PID and SeverityScore signif-
icantly improve the accuracy of HFA sensitivity predictions.
Broader implementation could help improve early detection
and treatment to reduce preventable vision loss, especially
in settings without traditional perimetry.
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